
Factor Income Taxation, Growth, and Investment

Speci�c Technological Change�

Monisankar Bishnuy Chetan Ghatez

Pawan Gopalakrishnan x

February 27, 2014

Abstract

We construct a tractable endogenous growth model with endogenous investment
speci�c technological change (ISTC) to explain why advanced economies with similar
growth rates have widely varying factor income tax rates. Public and private capital
stock externalities are assumed to augment ISTC. A specialized labor input augments
�nal good production. We show that several labor and capital tax combinations can
implement the planner�s growth rate on the balanced growth path. We show that
allowing for endogenous ISTC and externalities leads to a divergence between the
welfare maximizing factor income tax mix and the factor income tax combination that
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for how the trade-o¤ between factor income taxes is a¤ected by the magnitude of the
externalities.
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1 Introduction

Why do advanced economies with roughly identical growth rates have widely varying factor

income tax rates? In this paper, we develop a growth model with endogenous investment

speci�c technological change and production externalities to understand this question.

Figure (1) plots the average annual real GDP growth rate from 1990 to 2007 against the

factor income tax ratio for several advanced economies.1 Average growth for all countries

(excluding Ireland) falls between 0:875% and 2:462%. The standard deviation of the average

real GDP growth rates is 0:878 (excluding Ireland, the standard deviation is 0:4756) which

indicates low dispersion of growth rates. What is striking however is that the range in

the ratios of the average capital income tax rate to the average labor income tax rate in

these economies is much more pronounced: 0:3951 to 1:725.2 In other words, there is more

dispersion in factor income tax ratios relative to dispersion in growth. Also, for 12 out of 17

economies the tax on labor income is higher than the tax on capital income

Figure (2) plots the di¤erence between the average factor income tax rates for these

economies. Despite having similar growth rates, what is striking is that whereas the di¤erence

between factor income taxes is large in some countries, it is quite small in others.3

[Insert Figure 1 and 2]

Finally, Figure (3) plots the levels of factor income tax rates across the G7 countries.

The incidence of factor income taxation is quite disparate. In the US, UK, Canada, and

Japan, the tax on capital income is greater than the tax on labor income. In contrast, for

Germany, Italy, and France, the reverse is true.

[Insert Figure 3]

1The growth rates are calculated from the OECD (2012) database: see Table (V XV OB). The countries
are: Austria (AUS), Belgium (BEL), Canada (CAN), Denmark (DEN), Finland (FIN), France (FRA),
Germany (GER), Greece (GRE), Ireland (IRE), Italy (ITA), Japan (JPN), Netherlands (NET), Portugal
(PRT), Spain (SP), Sweden (SWE), United Kingdom (UK) and United States of America (USA). The base
year is 2000

2Canada and Japan have data on capital and labor income tax estimates based on the approach used in
Mendoza et al. (1994) and Trabandt and Uhlig (2009) from 1965 to 1996. For Germany, United Kingdom
and United States of America, data is from 1965 to 2007. For France, the data is from 1970 to 2007. For
Italy, the data is from 1980 to 2007. For Austria, Belgium, Denmark, Finland, Netherlands, Portugal and
Sweden, the data is from from 1995 to 2007. For Spain and Greece, the data is from 2000 to 2007. Finally,
for Ireland, the data is from 2002 to 2007.

3The data on factor income taxes are from Mendoza et al. (1994) and Trabandt and Uhlig (2009). The
latter have used the approach in Mendoza et al. (1994) to estimate the tax rates for 17 OECD nations till
2007.

2



To explain these observations, we construct an endogenous growth model with endoge-

nous investment speci�c technological change.4 The point of departure of our model however

is that public capital ��nanced by distortionary taxes �augments investment speci�c tech-

nological change (ISTC) as a positive externality.5 Typically in the literature, the public

input is seen as directly a¤ecting �nal production directly either as a stock or a �ow (e.g., see

Futagami, Morita, and Shibata (1993), Chen (2006), Fischer and Turnovsky (1997, 1998),

and Eicher and Turnovsky (2000)). We therefore formalize the link between factor income

taxation and growth through the e¤ect that public policy has on investment speci�c tech-

nological change.6

In addition to positive spillovers from the public capital stock, we assume two other

externalities. First, we assume that private capital externalities also a¤ects investment

speci�c technological change. This assumption is motivated by Greenwood et al. (1997), who

show that the real price of capital equipment in the US �since 1950 �has fallen alongside

a rise in the investment-GNP ratio; hence, we assume that the aggregate stock of capital

also exhibits a positive externality in investment speci�c technological change through the

aggregate capital output ratio. Greenwood et al. (1997, p. 342) say: "The negative co-
movement between price and quantity.....can be interpreted as evidence that there has been

signi�cant technological change in the production of new equipment. Technological advances

have made equipment less expensive, triggering increases in the accumulation of equipment

both in the short and long run."7 Second, we assume that the specialized labor input in the

4A growing literature has attributed the importance of investment speci�c technological change to long
run growth (see Greenwood et al. (1997, 2000); Whelan (2003)). Investment speci�c technological change
refers to technological change which reduces the real price of capital goods. Greenwood et al. (1997, 2000)
show that once the falling price of real capital goods is taken into account, this explains most of the observed
growth in output in the US, with relatively little being left over to be explained by total factor productivity.
Other authors, such as Gort et al. (1999) distinguish between equipment speci�c technological change and
structure speci�c technological change. These authors show that 15% of US economic growth rate can
be attributed to structure speci�c technological change in the post war period, while equipment-speci�c
technological progress accounts for 37% of US growth. This implies 52% of US economic growth can be
attributed to technological progress in new capital goods.

5Our setup also allows investment speci�c technological change to enhance the accumulation of public
capital. For instance, providing better infrastructure today reduces the cost of providing public capital in
the future.

6To the best of our knowledge, we are not aware of any paper in the literature in which public capital
a¤ects ISTC, either directly or as an externality. In a di¤erent context, Harrison and Weder (2000) build
a two sector representative agent model with increasing returns to scale driven by externalities that come
from sector speci�c as well as aggregate economic activity. Benhabib and Farmer (1996) show that small
empirically plausible external e¤ects lead to indeterminacy. Neither of these papers has a role for public
capital. Lloyd-Braga, Modesto, and Seegumuller (2008) introduce positive government spending externalities
in preferences. In our model, externalities from the public stock in�uence ISTC directly.

7In addition, DeLong and Summers (1991) show that investment in machinery is associated with very
strong positive externalities. Hamilton and Monteagudo (1998) �nd that capital is associated with positive
external e¤ects in an estimated Solow growth model.
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research sector exerts a positive externality in the production of the �rst sector, the �nal

good.8 We show that a higher weight on the specialized labor input externality raises the

growth rate on the balanced growth path and gives us additional traction in explaining the

factor income tax gaps documented in Figures (1), (2) and (3).

1.1 Description of the Model and Main Results

In our model, the �nal good sector produces a �nal good, using private capital, and labor.

Labor supply is composite in the sense that one type of labor activity is devoted to �nal good

production, and the other to research which directly reduces the real price of capital goods

in the next period. The agent optimally chooses each labor activity. The second sector

captures the e¤ect of public capital and the private capital stock spillovers and research

activity on reducing the real price of capital goods. The planner is assumed to internalize

the externalities. In the planner�s problem, we assume that public investment is �nanced

by a �xed proportional income tax as in Barro (1990). Because the tax rate is �xed, this

characterizes the constrained �rst best �scal policy in our model. For �xed parameters, we

show that there is an optimal growth rate that results from solving the planner�s problem.

We characterize the steady state balanced growth path for this economy. We show that the

growth maximizing tax rate is determined by the relative importance of the public capital

output ratio vis-a-vis the private capital output ratio in the investment speci�c technological

change function. The implication of this is that if a planner was to choose the tax rate to

maximize balanced growth, the planner could maximize long run growth as long as the tax

rate equals the relative contribution of public capital to investment speci�c technological

change.9

We then decentralize the planner�s allocations. We assume that public investment is

�nanced by distortionary factor income taxes on capital and labor income. We show that

while the constrained �rst best �scal policy can be implemented as a competitive equilib-

rium, there is an indeterminate combination of capital tax rates and the labor tax rates that

can replicate the planner�s allocations. Our de�nition of indeterminacy is as follows: there

is no unique combination of factor income taxes on capital and labor income that imple-

8A real life example that motivates this assumption is the skill required for advanced manufacturing jobs.
Skilled factory workers today are typically "hybrid-workers": they are both machinists as well as computer
programmers. For instance, in the US metal-fabricating sector, workers not only use cutting tools to shape
a raw piece of metal, but they also write the computer code that instructs the machine to increase the speed
of such operations. See Davidson (2012).

9In a full blown planner�s problem, the planner would be allowed to control the accumulation of public
capital. In this case, we will show later that the optimal tax rate is also constant. By focusing on the
constrained �rst best, we are able to keep the model tractable without any loss of generality.
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ments the planner�s allocations. Indeterminacy obtains because the planner�s allocations are

implemented with a �xed tax rate on output.

The main insights that we gain from the model are as follows:

� When there are no externalities, equal factor income taxes always yield the optimal
growth rate from the planner�s problem.

� In the presence of externalities, there are various factor income tax rates that imple-
ment the planner�s growth rate along the steady state balanced growth path. Intu-

itively, the higher is the externality associated with the specialized labor input in the

research sector (which exerts an externality in the production of the �rst sector, the

�nal good), the lower is the optimal tax on capital for a given tax on labor income.

This is because agents - by taking this externality as given - under-fund capital accu-

mulation. A lower tax on capital income incentivizes capital accumulation and restores

the planner�s growth rate. The di¤erence between both factor income taxes declines

as the e¤ect of the externality is reduced. Similarly, when the externality e¤ects from

the aggregate stocks (public and private) increase, these stocks increase the level of in-

vestment speci�c technological change. However, since agents do not internalize these

spillovers from the aggregate stocks, they under-fund capital accumulation relative to

the e¢ cient growth rate. To incentivize capital accumulation, the planner sets a low

optimal tax on capital income. Our calibrated results show that the trade-o¤ between

factor income taxes is a¤ected by the magnitude of the externalities.

� We show that the divergence of the welfare maximizing factor income tax mix from the
factor income tax mix that implements the planner�s allocations can be decomposed

into two e¤ects: 1) the e¤ect because of externalities from public and private capital,

and 2) the e¤ect on �nal good production due to positive spillovers from specialized

labor: In the limiting case, where the externalities go to zero, and when ISTC is

exogenous, the welfare maximizing factor income tax mix converges to the growth

maximizing factor income tax mix. Hence, both production externalities and allowing

for endogenous ISTC imply departures from the planner�s allocations.

1.2 Literature Review

The setup of our model is technically similar to Hu¤man (2007, 2008) who explicitly models

the mechanism by which the real price of capital falls when investment speci�c technological

change occurs. Hu¤man (2008) builds a neoclassical growth model with investment speci�c

technological change. Labor is used in research activities in order to increase investment
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speci�c technological change. In particular, the changing relative price of capital is driven by

research activity, undertaken by labor e¤ort. Higher research spending in one period lowers

the cost of producing the capital good in the next period.10 Investment speci�c technological

change is thus endogenous in the model, since employment can either be undertaken in a

research sector or a production sector. His model includes capital taxes, labor taxes, and

investment subsidies that are used to �nance a lump-sum transfer. Hu¤man (2008) �nds that

a positive capital tax that is larger than a positive investment subsidy along with zero labor

tax can replicate the �rst best allocation. Hu¤man�s models however do not incorporate

public capital - a feature we show that is important in matching factor income tax rates

observed in advanced economies.

Our paper is also related to two other strands of the literature on �scal policy and long

run growth in the neoclassical framework. The �rst literature - started by Barro (1990)

and Futagami, Morita, and Shibata (1993) � incorporate a public input � such as public

infrastructure �that directly augments production. In Barro (1990), public services are a

�ow; while in Futagami, Morita, and Shibata (1993), public capital accumulates. However,

in the large literature on public capital and its impact on growth spawned by these papers,

the public input, whether it is modeled as a �ow or a stock, doesn�t directly in�uence the real

price of capital goods.11 Since public capital a¤ects the real price of capital explicitly in our

model, this means that the public input a¤ects future output through its e¤ect on both future

investment speci�c technological change, as well as future private capital accumulation. Our

main methodological contribution is that we merge the public capital/endogenous growth

literature with the endogenous investment speci�c technological change literature. To the

best of knowledge, whereas distortionary taxes have been exogenously imposed to correct

for externalities in the literature, our model is the �rst attempt to explain how di¤erences

in factor income taxes across countries can be explained by the existence of production

externalities. To the extent that such spillovers exist in actual economies, our analysis seeks

to understand how the magnitude of various externalities/spillovers have a bearing on the

optimal factor income tax mix that implements the constrained �rst best optimum on a

balanced growth path.

The rest of the paper proceeds as follows. Section 2 develops the basic model structure

followed by characterizing the planner�s model, the competitive equilibrium and some nu-

merical experiment under unequal factor income taxes that shows how the magnitude of

10Krusell (1998) also builds a model in which the decline in the relative price of equipment capital is a
result of R&D decisions at the level of private �rms.
11For instance, in Ott and Turnovsky (2006) - who use the �ow of public services to model the public

input - and Chen (2006), Fischer and Turnovsky (1998) - who use stock of public capital - the shadow price
of private capital is a function of public and private capital.
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externalities in the model is crucial to the optimal tax mix. Section 3 concludes.

2 The Model

Consider an economy that is populated by identical representative agents, who at each period

t, derive utility from consumption of the �nal good Ct and leisure (1 � nt). The term nt

represents the fraction of time spent at time t in employment. The discounted life-time

utility, U; of an in�nitely lived representative agent is given by

U =
1P
t=0

�t[logCt + log(1� nt)]. (1)

where � 2 (0; 1) denotes the period-wise discount factor. There is no population growth in
the economy and the total supply of labor for the representative agent at any time t is given

by nt such that

nt � n1t + n2t; (2)

where n1t is labor allocated for �nal goods production and n2t is labor allocated for enhancing

investment speci�c technological change. The representative agent however is not aware that

his allocation of labor towards n2t also in�uences productivity of �nal goods production.

The �nal good is therefore produced by a standard production function with capital Kt,

n1t; and aggregate n2t entering as an externality, which we denote by n2t. The key di¤erence

is that the planner internalizes the externality from n2 in direct production, while agents do

not. The production function is given by

Yt = AK
�
t n

1��
1t

�
n1��2t

��| {z }
Externality

(3)

where A > 0 is a scalar that denotes the exogenous level of productivity, � 2 (0; 1) is the
share of output paid to capital, and � > 0 is the externality parameter capturing the e¤ect

that n2 has on direct production. When � > 0; the planner internalizes the e¤ect that n2 has

on direct production. When � = 0; there is no externality from n2 on the production of the

�nal good. Note, in this framework, as in Hu¤man (2008) the two labor activities n1t and

n2t are assumed to be equally skilled, but are optimally allocated across di¤erent activities

by households.12

12Other papers in the literature - such as Reis (2011) - also assume two types of labor a¤ecting production.
In Reis (2011), one form of labor is the standard labor input, while the other labor input is entrepreneurial
labor.

7



Private capital accumulation grows according to the standard law of motion augmented

by investment speci�c technological change,

Kt+1 = (1� �)Kt + ItZt; (4)

where � 2 [0; 1] denotes the rate of depreciation of capital and It represents the amount of
total output allocated towards private investment at time period t. We assume that, � = 1;

to keep the model tractable. Zt represents investment-speci�c technological change. The

higher the value of Zt; the lower is the cost of accumulating capital in the future. Hence Zt
can also be viewed as the inverse of the price of per-unit private capital at time period

t. The term, ItZt; therefore represents the e¤ective amount of investment driving capital

accumulation in time period t+ 1.

In addition to labor time deployed by the representative �rm towards R&D, the public

capital stock, G; plays a crucial role in lowering the price of capital accumulation. Typically

the public input is seen as directly a¤ecting �nal production �either as a stock or a �ow

(e.g., see Futagami, Morita, and Shibata (1993), Chen (2006), Fischer and Turnovsky (1997,

1998), and Eicher and Turnovsky (2000)). Instead, here we assume that the public input

facilitates investment speci�c technological change. This means that the public input a¤ects

future output through future private capital accumulation directly. In the above literature,

the public input a¤ects current output directly. This is our point of departure. We therefore

formalize the link between factor income taxation and growth through the e¤ect that public

policy has on investment speci�c technological change.

We assume that in every period, public investment is funded by total tax revenue. Public

capital therefore evolves according to

Gt+1 = (1� �)Gt + Igt Zt; (5)

where Gt+1 denotes the public capital stock in t + 1, and I
g
t denotes the level of public

investment made by the government in time period t:

Igt = �Yt; (6)

where � 2 (0; 1) is the proportional tax rate.13 We assume that Zt augments Igt in the same
way as It since it enables us to analyze the joint endogeneity of Z and G: To derive the

balanced growth path, we further assume that the period wise depreciation rate � 2 [0; 1] is
13Since � = 1; equation (5) implies that Gt+1 = I

g
t Zt; i.e., the ISTC adjusted public investment (�ow) at

period t equals the public capital stock in t+ 1:
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same for both private capital and public capital.

2.1 Investment Speci�c Technological Change

To capture the e¤ect of public capital on research and development, we assume that Z grows

according to the following law of motion,

Zt+1 = Bn2t
�Zt

(�
Gt
Yt�1

���
Kt

Yt�1

�1��)1�
| {z }

Externality

: (7)

Here, B stands for an exogenously �xed scale productivity parameter and � 2 (0; 1) captures
the impact of public investments on investment speci�c technological change. We assume

that the parameters, � 2 (0; 1) and  2 (0; 1); � stands for the weight attached to research
e¤ort and  is the level of persistence the current year�s level of technology has on reducing

the price of capital accumulation in the future.14 The term Gt
Yt�1

represents the externality

from public capital in enhancing investment speci�c technological change in time period t+1.

The aggregate capital-output ratio, Kt

Yt�1
, is also assumed to exert a positive externality e¤ect

on investment speci�c technological change. In particular, a higher aggregate stock of capital

in t; Kt; relative to Yt�1; raises Zt+1: Like the externality from n2; the planner internalizes the

e¤ect that stock of public capital and private capital has on investment speci�c technological

change, while agents treat the e¤ect of Gt
Yt�1

and Kt

Yt�1
on Zt+1� the bracketed term �as given.15

Note that when  = 1; � = 0; ISTC is exogenous.

14This contrasts with Hu¤man (2008) where  = 1 is required for growth rates of Z and output to be along
the balanced growth path. We require  2 (0; 1) for the equilibrium growth rate to adjust to the steady
state balanced growth path.
15We assume that � = 1 for analytical tractability. Our assumption of Gt

Yt�1
augmenting Zt+1 is for two

reasons. First, if Gt augmented output Yt instead, we can show that in equilibrium, the only possible
balanced growth path is when the gross growth rate of all endogenous variables is 1 that is, all variables are
at their steady state. This means, public capital will not a¤ect the growth rate. Hence, allowing for ISTC
to depend on the public input enables the balanced growth path to be a¤ected by tax policy through ISTC.
Second, if Zt+1 was instead parametrized as

Zt+1 = Bn2t
�Zt

n
G�tK

1��
t

o1�
;

i.e., G and K are not normalized by Y; we can show that the growth rate if Z will never converge to a
balanced growth path.
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2.2 The Planner�s Problem

We �rst solve the planner�s problem. The aggregate resource constraint the economy faces

in each time period t is given by

Ct + It � Yt(1� �) = AK�
t n

1��
1t

�
n1��2t

��
(1� �) (8)

where agents consume Ct at time period t and invest It at time period t. Aggregate con-

sumption and investment add up to after-tax levels of output, Yt(1� �), where � 2 [0; 1] is
the proportional tax rate that is assumed to be �xed in every time period.

The planner maximizes life-time utility of a representative agent �given by (1) �subject

to the economy wide resource constraint given by (8), the laws of motion (4) and (5), the

equation describing investment speci�c technological change (7), the identity for total supply

of labor given by (2) and �nally, the government budget constraint given by (6).16 Because

the tax rate is �xed, this yields the constrained �rst best �scal policy in the model.17

2.2.1 First Order Conditions

The Lagrangian for the planner�s problem is given by,

L =
1P
t=0

�t[logCt + log(1� n1t � n2t) + �tfAK�
t n

1��
1t

�
n1��2t

��
(1� �)� Ct � Itg]: (9)

where �t is the Lagrangian multiplier. Because our focus is on the balanced growth path, we

assume that � = 1.

The following �rst order conditions obtain with respect to Ct, Kt+1, n1t, and n2t; respec-

tively18:

fCtg : 1
Ct
= �t (10)

fKt+1g :
1

CtZt
=
��Yt+1(1� �)
Ct+1Kt+1

+�2
It+2
Ct+2

(1� )(1� �)
Kt+1

+
�3(1� )((1� �)� �)

Kt+1

1P
j=0

�jj
It+j+3
Ct+j+3| {z }

Additional term due to externality in ISTC

(11)

16Clearly, Ct + It + I
g
t = Yt:

17As mentioned in the introduction, by focusing on the constrained �rst best, we are able to focus our
numerical results on the contribution of public capital to ISTC. In a full blown planner�s problem, the planner
would instead be allowed to control the accumulation of public capital. While we do not show this here, this
would yield that the growth rate is maximized at � t = {�; for all t where we can show that { < 1: Hence,
the �rst best also yields a constant tax rate: These results are available from the authors on request.
18See Appendix A for derivations.
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fn1tg :
1

1� nt
=
(1� �)Yt(1� �)

Ctn1t
� �

2(1� �)(1� )
n1t

1P
j=0

�jj
It+j+2
Ct+j+2| {z }

Additional term due to externality in ISTC

(12)

and,

fn2tg :
1

1� nt
=
(1� �)�Yt(1� �)

Ctn2t
+ ��

It+1
Ct+1n2t

+
�2(� � (1� �)�(1� ))

n2t

1P
j=0

�jj
It+j+2
Ct+j+2| {z }

Additional term due to the joint e¤ect of endog. ISTC and externalities

:

(13)

Equation (10) represents the standard �rst order condition for consumption, equating the

marginal utility of consumption to the shadow price of wealth. Equation (11) is an aug-

mented form of the standard Euler equation governing the consumption-savings decision of

the household. The �rst term on the RHS of equation (11), ��Yt+1(1��)
Ct+1Kt+1

; corresponds to the

after tax marginal productivity of capital in t + 1. The second term, �
2It+2(1�)(1��)
Ct+2Kt+1

> 0; is

the (further) increment to the marginal productivity of capital that agents get in period t+2

by postponing consumption today. This is increasing in the investment-consumption ratio,

but adjusted by the weight, 1 � �; of the aggregate capital-output ratio, in the investment
speci�c technological change equation. The third term, �

3(1�)((1��)��)
Kt+1

1P
j=0

�jjIt+j+3
Ct+j+3

; is the

discounted increase in marginal productivity of investing in capital from period t + 3 on-

wards. This expression is adjusted by the term ((1��)��), which can be either positive or
negative �depending on the relative importance of capital in equation (7) vis-a-vis its direct

contribution to increasing output, from (3). It is easy to see that when  = 1; the additional

terms in the Euler equation are equal to zero, yielding the standard Euler equation.

Equation (12) denotes the optimization condition with respect to labor supply (n1t):

Since 0 <  < 1; the second term in the RHS is positive which constitutes a reduction in the

marginal utility of leisure. This reduces n1 relative to the standard case in which there is no

investment speci�c technological change. Similarly, in equation (13), the second and third

terms in the RHS are the t > 0 increment to marginal utility of leisure that accrues in the

future because of n2�s role in assisting both research e¤ort and increasing output. However,

because n2 has a direct and indirect e¤ect (through production and investment speci�c

technological change, respectively), the future discounted gains are adjusted by the term

[��(1��)�(1�)]: Going forward, it is important to note that if [��(1��)�(1�)] > 0;
then �nal good production is not n2 intensive.
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2.2.2 Decision Rules

We now derive the closed form decision rules based on the above �rst order conditions using

the method of undetermined coe¢ cients, as shown the following Lemma (1).

Lemma 1 Ct, It; nt; n1t;n2t are given by (14), (15), (16), where 0 < � < 1 is given by (17),
and 0 < x < 1 given by (18) is a constant.

Ct = �PYt(1� �); It = (1� �P )Yt(1� �) (14)

nt = nP =
(1� �)[(1� �)� �2(1� )(1� �P )]

(1� �)[(1� �)� �2(1� )(1� �P )] + �PxP (1� �)
; (15)

n1P = xPnP ; n2P = (1� xP )nP ; (16)

where �P is given by

�P = 1�
��(1� �)

(1� �)� �2(1� )(1� �) + ��3(1� )
, (17)

and xP is given by

xP =
(1� �)f(1� �)� �2(1� )(1� �P )g

(1 + �)(1� �)f(1� �)� �2(1� )(1� �P )g+ ��(1� �P )
: (18)

Proof. See Appendix A for derivations.
While decision rules for consumption and investment given by (14) suggest that levels

of consumption and investment would fall if the proportional tax rate � increases, the share

of after tax income spent on consumption given by �P increases when � rises, and thereby

for investment it falls. Intuitively, when � rises the weight on the ratio of public capital

to output, Gt
Yt�1

in augmenting investment speci�c technological change increases and so the

weight on the ratio Kt

Yt�1
falls. Since the planner solves the optimization problem for the

representative agent, the e¤ect of increases in � on private investments is therefore expected.

The labor supply is a¤ected by �. In fact, increases in � has an ambiguous e¤ect on n1P
but has a strong negative e¤ect on n2P which leads to an overall reduction in nP .

An increase in � increases the share of nP devoted to n1P , i.e., @xP@� > 0: Since @�P
@�

> 0

from before, this implies @nP
@�

< 0:19 To see this, we can decompose the total change in nP

19See Appendix C
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because of changes in � by
@nP
@�

=
@n1P
@�

+
@n2P
@�

:

Given @xP
@�
> 0 and @�P

@�
> 0 (and hence, @(1�xP )

@�
< 0) @n2P

@�
< 0 will be true: Since the change

in n1P due to a change in � can be written as

@n1P
@�

= xP
@nP
@�|{z}
<0

+ nP
@xP
@�|{z}
>0

;

@n1P
@�

may or may not be negative. Hence, while an increase in � has an ambiguous e¤ect

on n1P ; it reduces n2P and since the latter e¤ect dominates, nP falls. This implies that an

increased weight of public capital induces agents to supply lesser labor particularly towards

research e¤ort (n2P ).

In contrast, an increase in � leads to an unambiguous increase in nP (from (15)). This is

because a rise in � leads to an increase in both nP and 1� xP . This implies that n2P rises.
However, the e¤ect of an increase in � lowers n1P unambiguously. Even though a rise in �

leads to opposite e¤ects on n1P and n2P ; total labor supply, nP ; rises (see (16)).

2.2.3 Balanced Growth Path

We can easily obtain the balanced growth path (BGP) by substituting the above decision

rules into the law of motion for investment speci�c technological change, (7). De�ne dMP a

constant as dMP = B((1� xP )nP )�(1� �P )(1��)(1�). (19)

Given the assumptions it is easy to show that we can obtain a constant growth rate for Z,

K, G and Y . This condition necessarily implies 0 < �P , xP , nP < 1 which always holds

true. We therefore have the following Lemma (2).

Lemma 2 On the steady state balanced growth path, the gross growth rate of Z, K, G and

Y are given by (20), and (21)20

cgzP = [dMPf(�)�(1� �)1��g(1�)]
1

2� (20)

cgkP = cggP = cgzP 1
1�� ; cgyP = cgkP � = cgzP �

1�� : (21)

There are several aspects of the equilibrium growth rate worth mentioning. First, the

growth rate is independent of the technology parameter, A; as in Hu¤man (2008). Second,

20See Bishnu, Ghate and Gopalakrishnan (2011).
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the growth rate of output, cgyP ; is less than cgkP along the balanced growth path because
equation (7) is homogenous of degree 1 + �. Lemma (2) therefore clearly establishes that

the e¤ect of the stock of public capital on Z a¤ects not just marginal productivity of factor

inputs but also growth rate at the balanced growth path.

Finally, from (20), the tax rate exerts a positive e¤ect on growth as well as a negative

e¤ect. This is similar to the equation characterizing the growth maximizing tax rate in

models with public capital. The mechanism here is however di¤erent. For small values of

the tax rate, a rise in � leads to higher public capital relative to output, Yt�1: This raises the

future value of investment speci�c technological change, Z: An increase in Z reduces the real

price of capital, stimulating investment and long run growth. However, for higher tax rates,

further increases in the tax rate depresses after tax income, and investment. This reduces

G relative to Y , lowering Z; and depressing investment and long run growth. Hence, there

is a unique growth maximizing tax rate.

Using the expression for gzP in (20) we can characterize the growth maximizing tax rate

as follows:

Proposition 1 In the steady state, the planner maximizes growth by choosing the propor-
tional tax rate given by � = �.

Proof. See Appendix A.

Proposition (1) sets a benchmark for the planner to set the optimal tax rate. If the

planner wants to maximize balanced growth, he should set the tax rate to �: The higher the

weight attached to Gt
Yt�1

in the investment speci�c technological change equation, the higher

should be the optimal tax rate set by the planner. This result is intuitive since it suggests

that the government would have to impose a higher tax rate on income if public capital were

to play a greater role in driving investment speci�c technological change.

2.2.4 Comparative Statics.

Equation (20) suggests that the equilibrium growth rate can be decomposed into two sources

- those coming from the term,dMP which captures the e¤ects on growth from nP , xP , and

�P (terms that are independent of the proportional tax rate �) and a composite (bracketed)

term which captures the trade-o¤s of increasing the proportional tax:

cgzP = fdMPg
1

2� [f(�)�(1� �)1��g(1�)| {z }] 1
2� :

The e¤ects on growth from taxes

It is important to note that the characterization of optimal growth in the planning prob-

lem is identical to Barro (1990) as in Proposition (1): This is because along the balanced
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growth path, the growth rate is purely dependent on the growth rate of Zt. But since public

capital a¤ects ISTC, it a¤ects growth through the tax rate.

What happens to growth because of a change in the deep parameter �? In particular,

we choose two values of � = f0:5; 0:7g. Given the other parameter values,21 �gure (4) shows
that an increase in � from 0:5 to 0:7 increases the growth maximizing tax rate, which is

expected, as seen in proposition (1). The plot shifts upward and skews to the right because

an increase in � from 0:5 to 0:7 reduces the optimal allocation towards n2 which leads to a

reduction in the growth rate for initially lower values of � . However, for higher values of �

the contribution from Gt
Yt�1

starts dominating and therefore, the growth rates are higher as

compared to the growth rates for a lower value of �.22

[Insert Figure 4]

2.3 The Competitive Decentralized Equilibrium

We now solve the competitive decentralized equilibrium. Consider an economy that is popu-

lated by a set of homogenous and in�nitely lived agents. There is no population growth and

the representative �rms are completely owned by agents, who supply labor for �nal goods

production, n1; and R&D, n2. Firms pay taxes (or receive subsidies) on capital income

� k 2 (�1; 1) while agents pay taxes (or receive subsidies) on labor income �n 2 (�1; 1).
Agents derive utility from consumption of the �nal good and leisure given in (1). The wage

payment wt for both kinds of labor are the same since there is no skill di¤erence assumed

between both activities. Agents fund consumption and investment decisions from their after

tax wages which they receive for supplying labor n1 and n2, and capital income earned from

holding assets, which essentially equals the returns to capital lent out for production at each

time period t .

The representative �rm produces the �nal good based on (3) but takes the externality

from n2 (given by n2) as given. Hence, the production function is given by

Yt = A
�
n1��2t

��| {z }
Externality

K�
t n

1��
1t

where the law of motion of private capital is given by (4). What is di¤erent compared to (3)

is that the agent takes the externality due to n2 as given. As mentioned earlier, agents also

21The value of other parameters are as follows: � = 0:35; � = 0:95;  = 0:5; � = 1; � = 0:2; � = 1:
These parameter values - except for � are borrowed from Hu¤man (2008), except for � = 1 which is the
externality parameter due to n2P in our framework. We also choose the value of B = 2, which is the scaling
parameter in Z.
22These results are however sensitive to level of persistence parameter :
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treat the e¤ect of Gt
Yt�1

and Kt

Yt�1
on Zt+1 as given. The government funds public investment, I

g
t ;

at each time period t using a distortionary tax imposed on labor, �n 2 (�1; 1); and capital,
� k 2 (�1; 1) respectively. The following is therefore the government budget constraint:

Igt = wt(n1t + n2t)�n + fYt � wt(n1t + n2t)g� k:

Like Hu¤man (2008), we assume that pro�ts are taxed according to the same rate as capital

income.

2.3.1 The Firm�s Dynamic Pro�t Maximization Problem

Firms solve their dynamic pro�t maximization problems which, at time t; have capital stock,

Kt; and Zt: Let v(Kt; Zt) denote the value function of the �rm at time t. The returns to

investment in the credit markets are given by rt at time period t: The following is the �rm�s

value function

v(Kt; Zt) = max
Kt+1;n1t;n2t

�
(Yt � w1tn1t � w2tn2t) (1� � k)�

Kt+1

Zt
+

1

1 + rt
v(Kt+1; Zt+1)

�
,

(22)

which it maximizes subject to (5) and (7).

The �rm�s maximization exercise yields the competitive factor prices for wages, and the

return to capital. We therefore get the following �rst order conditions,23

fKt+1g :
1

Zt
=

�
1

1 + rt

�
�Yt+1(1� � k)

Kt+1

fn1tg : wt =
(1� �)Yt
n1t

fn2tg : wt(1� � k) =
�
�

n2t

� 1P
j=0

j
�

jQ
k=0

1

1 + rt+k

�
It+j+1.

In deriving these factor prices, we assume that the externality from n2 in production is

assumed to be given.

23See Appendix B.
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2.3.2 The Agents Problem

Agents are allowed to borrow and lend by participating in the credit market. A representative
agent maximizes (1) subject to the consumer budget constraint,

at+1 = (1 + rt)at + wt(n1t + n2t)(1� �n)� ct; (23)

the laws of motion given by (4), (5) and (7), total labor supply given by (2), and takes factor

prices and pro�ts as given. Agents therefore hold asset at which in equilibrium equals private

capital accumulation used in production, as follows

at = Kt; 8t � 0:

2.3.3 First Order Conditions

The following is the Lagrangian for the agent.

L =
1P
t=0

�t[logCt+log(1�n1t�n2t)+�tf(1+rt)at+wt(n1t+n2t)(1� �n)� ct�at+1g]: (24)

The optimization conditions with respect to Ct, Kt+1, n1t, and n2t; are given by equations

(25), (26), (27) and (28) respectively:

fCtg : 1
Ct
= �t (25)

fat+1g :
�(1 + rt)

ct+1
=
1

ct
(26)

fn1tg :
wt(1� �n)

ct
=

1

1� nt
(27)

fn2tg :
wt(1� �n)

ct
=

1

1� nt
. (28)

Once we substitute for factor prices from the �rm�s problem into equations (25), (26),

(27) and (28), we obtain the following �rst order conditions for the competitive equilibrium:

fKt+1g :
1

ctZt
=
��Yt+1(1� � k)
ct+1Kt+1

(29)

fn1tg :
1

1� nt
=
(1� �)Yt(1� �n)

ctn1t
(30)
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fn2tg :
1

1� nt
=

�
��

n2t

��
1� �n
1� � k

� 1P
j=0

�jj
It+j+1
ct+j+1

: (31)

Equation (29) is the standard Euler equation for the household. Compared to equation

(11) in the planner�s problem, the e¤ect of the stock-externalities because of K and G on

the inter-temporal savings decision is absent. This is because agents do not internalize

this externality. Equations (30) and (31) equate the after tax wage to the MRS between

consumption and leisure. Compared to equations (12) and (13) respectively, the additional

terms due to the externalities are also absent.

2.3.4 Decision Rules

Based on the above �rst order conditions, the following Lemma (3) states the optimal decision

rules for the agents.

Lemma 3 Ct, It; nt; n1t;n2t are given by (32), (33), (34), where 0 < � < 1 is given by (35),
and 0 < x < 1 given by (36) is a constant.

Ct = �CEAYt; It = (1� �CE)AYt (32)

where, A = �(1� � k) + (1� �)(1� �n)�
��2�(�n � � k)
(1� �)

nt = nCE =
(1� �)(1� �n)

(1� �)(1� �n) + xCE�CEA
; (33)

n1CE = xCEnCE; n2CE = (1� xCE)nCE; (34)

where �CE is given by

�CE = 1�
��(1� � k)

A
, (35)

and xCE is given by

xCE =
(1� �)(1� �)

��2� + (1� �)(1� �)
: (36)

Proof. See Appendix B for details.
The above decision rules imply that depending upon the parameter values, there exists

a feasible range of values that � k and �n can take such that

0 < A;�CE; nCE < 1;

18



are true. The relationship between growth rates at the balanced growth path for private

capital, public capital, output and investment speci�c technological change are identical to

that for the planner�s version, as given in Lemma (2).

2.4 Decentralizing the Planner�s Growth Rate

We would like to ascertain under what conditions the competitive equilibrium allocations

implement the planner�s growth rate. We consider two cases: the case in which planner

imposes equal factor income taxes on agents, i.e., �n = � k = � ; and the case under which

factor income taxes are unequal �n 6= � k.

2.4.1 Equal factor income taxes:

No externalities Suppose there are no externalities in the model, i.e.,  = 1 and as

� = 0: Further, the government imposes equal factor income taxes on both capital and labor

income, such that

�n = � k = � :

We show in Appendix C that equal factor income taxes will implement the planner�s growth

rate. In general, in the absence of the externalities, � k = �n = � , is the only factor income

tax combination that implements the planner�s growth rate.24

Externalities In this case (when 0 <  < 1 and � > 0) , the decision rules for the

competitive equilibrium at optimum. Ct, It; nt; n1t;n2t are now given by (37), (38), (39),

where 0 < �CE < 1 is given by (40), and 0 < xCE < 1 given by (41) is a constant.

Ct = �CEAYt; It = (1� �CE)AYt (37)

where, A = (1� �) (38)

nt = nCE =
(1� �)

(1� �) + xCE�CE
; (39)

where �CE is given by

�CE = 1� ��, (40)

24This result also holds true when � = 0: In Appendix C we show that, under a knife-edge restriction,�
1��
�

�2
= �; any factor income tax combination (including the case of equal factor income taxes) implements

the planner�s growth rate.
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and xCE is given by

xCE =
(1� �)(1� �)

��2� + (1� �)(1� �)
: (41)

When factor income taxes are equal, growth rates in the competitive environment is

maximized when � = �.25 However, since agents do not internalize the externality in both

production and investment speci�c technological change, the competitive equilibrium growth

rate may not be equal to the planner�s growth rate. However, as the level of persistence,

 (the coe¢ cient on Z); in investment speci�c technological change increases, and as the

externality in production due to the choice n2CE decreases (i.e., the e¤ect of all three ex-

ternalities diminish) the decision rules for the agent coincide with that of the planner and

hence growth rates coincide.

2.4.2 Unequal factor income taxes: a simple numerical exercise

In this section, we conduct a simple numerical exercise to match the calibrated factor income

tax gaps from our model with the tax gaps identi�ed in Figures (1) and (2).26 As noted in

the introduction, the factor income tax mix that implements the planner�s growth rate is

indeterminate because the planner�s growth maximizing allocations are implemented with

a �xed tax rate on output. Our strategy is to �rst �x the tax on labor income, �n. For a

�xed labor income tax rate, we then calibrate the tax on capital income that decentralizes

the planner�s allocations numerically. We show that we can restore the planner�s growth

rate by varying the production externalities so that the tax gaps match �up to a reasonable

approximation �those observed in the data.

Since empirical magnitudes of externalities associated with the stock of public and private

capital, and specialized research input, are not available in the literature, we focus our

results on checking whether large factor income tax gaps of the magnitude reported in the

introduction can be generated by small changes in the size of externalities. We assume that

the externality parameter governing how much labor devoted to improving capital quality

a¤ects productivity (�) �is small. We therefore �x the value of � = 0:1: In contrast, the

stock externalities � captured by the term (1 � ) � relate to public and private capital
stocks in national economies, which can be large or small. We therefore vary  from 0 to

1: Our other parameters are given by: � = 0:35; � = 0:95; � = 1; � = 0:2 which are taken

from Hu¤man (2008). Parameters A and B are constant scaling parameters: we arbitrarily

choose them to be A = 1 and B = 4: We consider the value of � = 0:5 to allow for both

public and private capital externalities to have equal weight. These parameters allow us to

25The proof of this is similar to the proof of Proposition (1) which can be refered to in Appendix A.
26For our numerical experiments we assume that f�n; �kg 2 [0; 1):
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compute the planner�s growth rate from equation (20).

We de�ne the iso-growth loci as representing all combinations of factor income taxes that

implement the planner�s growth rate. Figure (5) plots the iso-growth loci where each upward

sloping locus represents the planner�s growth rate for a speci�c value of the parameter, ;

where all the other parameters are unchanged. Figure (5) illustrates two results.

[Insert Figure (5)]

First, both factor income tax combinations converge towards equality as the magnitude

of externalities diminish. That is, for a given level of �; as the value of  ! 1; the iso-growth

locus for (�n; � k) shifts up and approximates the 45� line from below. This means for a given

tax on labor income, �n, with higher spillovers from G and K (i.e.,  ! 0) , a lower � k
implements the planner�s allocations because under-accumulation of capital is high. That is,

factor income taxes diverge when the spillovers are large.

Second, Figure (5) show that as  increases (and converges to 1); the implied factor

income tax gaps are roughly within the range observed in the data. As pointed out in the

introduction, 12 out of 17 OECD economies have a tax on labor income greater than a tax on

capital income (from Figure 1 and 2). The average tax gap for these 12 economies is roughly

0:136, where the � two standard deviation yields an interval of (0:01; 0:27): To generate tax
gaps in this range, we assume that �n is greater than � k. We then calibrate � k by varying 

from 0 to 1 (with � = 0:1): For example, in Figure (5), point (a) is on an iso-growth locus

that assumes  = 0:9 and �n = 0:5: The corresponding calibrated tax on capital income

is 0:21 which yields a tax gap (�n � � k) of 0:29; marginally higher than the average tax
gap observed in, say, a country like Austria (which is 0:26). Point (b) is on an iso-growth

locus that assumes  = 0:95; where again �n = 0:5. The calibrated tax on capital income

is � k = 0:31 which yields a tax gap (�n � � k) of 0.19 roughly identical to the average factor
income tax gap observed in, say, Finland. Finally, point (c) corresponds to the case when

 = 1. This shows that �n�� k 6= 0 since � 6= 0:If � = 0, the iso-growth locus converges to the
45 degree line, and �n� � k = 0:Intuitively, when agents don�t internalize the role that public
and private capital aggregates have on ISTC, they under-invest in capital. The stronger the

magnitude of the externalities, the higher is the extent of the under-investment, and so the

larger is the factor income tax gap. Therefore, the planner�s growth rate can be restored by

taxing capital income at a lower rate. Thus, our numerical experiments con�rm that small

values of externalities (1�; �) yield large factor income tax gaps when the planner�s growth
rate is implemented.27 We summarize this in terms of the following remark:

27However, there exist parameter combinations under which the ranking on factor income tax levels can
get reversed. This happens when � is high. This implies that the ranking between �k and �n is sensitive to
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Remark 1 The presence of externalities gives rise to unequal factor income tax rates that
implement the planner�s growth rate. As the magnitude of externalities diminish, these fac-

tor income tax rates converge towards equality. Numerically, we �nd that small values of

externalities (1� ; �) can yield large factor income tax gaps when the planner�s growth rate
is implemented.

Empirically, equal factor income taxes are rarely observed in the data. Our claim is that

these externalities matter in explaining factor income tax di¤erences in advanced economies.

There are two aspects that should be noted. As shown in Figure (2) similarly growing

economies factor income taxes are not just unequal, but the absolute gaps between the

two also vary. As shown in Figure (1 and 2), there is no clear ranking between the two

level of factor income tax rates although in general, �n > � k: By incorporating di¤erent

production externalities in a model of endogenous investment speci�c technological change,

our results yield this outcome. More generally, we show that di¤erent parametric values

for these externalities can help explain factor income tax gaps that we observe in actual

economies.

2.5 Welfare

We assume that the values of K0 and G0 are such that the economy is on the balanced

growth path. Given this, we compute welfare for agents by substituting the representative

agent�s optimal decision rules given in Lemma (3) and given by (32), (33), (34), (35), and

(36) into the representative agent�s discounted life time utility function given by (1). This

yields the following expression28

� =
log[�CE]

1� � +
log[Y0]

1� � +
log[A(� k; �n)]

1� � +
�2�

(1� �)(1� �) log gc;CE +
log(1� nCE)

1� � : (42)

We then ask how a factor income tax combination that maximizes welfare compares with

the factor income tax rates (�n; � k) that restores the planner�s growth rate. Our result �which

we are only able to show numerically �is that di¤erent magnitudes of the key externality

parameters � and � �in�uence the welfare maximizing factor income tax combinations.

We assume  takes arbitrary values f0:3; 0:9g that is, a high externality and low externality
case; meanwhile, we �x � = 0:1.

factor shares in �nal good production. For instance, if  = 0:4;� = 0:6; � = 0:5;� = 0:7; �k > �n: Finally,
the optimal tax on capital can also be a subsidy(�k < 0), so that the planner can restore the equilibrium
growth rate by subsidizing capital income. For instance, this obtains when  is low and � is high.
28See Devarajan et al. (1998). For the entire welfare calculation, see Appendix D.
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As in Figure (5), in Figure (6) we plot the iso-growth locus when the externality due to n2
in production is marginal (� = 0:1). This locus represents all factor income tax combinations

as in Figure (5) that implements the planner�s growth rate. The welfare maximizing tax

combination - which is unique - is indicated by the circle in Figure (6), which is underneath

this iso-growth locus. This means that for the welfare maximizing tax to replicate the

planner�s growth rate, the tax on capital income needs to be higher. The result is similar

when we have higher values of :29 As can be seen in Figure (6) the welfare maximizing tax

on capital income is always less than the labor income tax rate. Intuitively, because of strong

production externalities, there is under-accumulation of capital. Therefore, in order to get

the planner to get to the iso-growth locus, the tax on capital income needs to be lower.

[Insert Figure 6]

We generalize these results in terms of the following remark:

Remark 2 When there are no externalities (� = 0;  = 1); and investment speci�c techno-
logical change is exogenous (� = 0); the unique welfare maximizing tax combination replicates

the planner�s growth rate. This happens because from equation (20), gZ = B for the plan-

ner and from the decentralized equilibrium. However, when investment speci�c technological

change is endogenous (� 6= 0) and there are externalities (� > 0; 0 <  < 1); then the iso-
growth locus of factor income tax combinations always yields lower welfare. Therefore, the

presence of both production externalities and endogenous ISTC imply departures from the

factor income tax mix that implement the planner�s growth rate.

The above remark suggests that the departure of the welfare maximizing tax rate from

the iso-growth locus has two sources 1) the e¤ect of externalities and 2) the e¤ect of n2 on

production and ISTC. When production externalities are absent (� = 0;  = 1), and ISTC is

endogenous (� 6= 0); the welfare maximizing tax mix does not coincide with the iso-growth
locus. The lower tax on capital income relative to the tax on capital income obtained in

this case is because of the role that endogenous ISTC has on capital accumulation. With

the additional restriction that � = 0, ISTC becomes exogenous, and the welfare maximizing

tax mix coincides with the iso-growth locus. Therefore, both production externalities and

endogenous ISTC imply departures from the factor income tax mix that restores the planner�s

growth rate.

29We have not explicitly presented the case where there is a high externality due to n2 in production
(� = 1): We can show that when  takes on a low value of 0:3 the iso-growth locus will be distinctly below
the unique welfare maximizing tax rate. This changes when  is high and is equals to 0:9.
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3 Conclusion

This paper constructs a simple and tractable endogenous growth model with spillovers

from the stock of public and private capital which in�uence investment speci�c technological

change. We focus on the steady state balanced growth path. Our model is motivated by the

empirical observation that advanced economies experiencing similar or identical growth rates

have widely varying factor income tax combinations. We characterize the planner�s problem

and show that the constrained �rst best �scal policy yields an indeterminate combination of

capital tax rates and the labor tax rates. This allows us to quantify and discuss intuitively

how speci�c externalities can have a bearing on the trade-o¤ between the optimal factor

income tax mix. In the welfare analysis, our framework allows us to also Pareto rank various

combinations of factor income taxes that implement the planner�s growth rate. We show

that both endogenous investment speci�c technological change as well as the presence of the

externalities imply deviations from the constrained �rst best tax mix. To the extent that

such spillovers exist in actual economies, they have a bearing on the optimal factor income

tax mix that implements the constrained �rst best optimum on a balanced growth path.

While we do not solve for the Ramsey allocations (second best �scal policy), our results

are closely related to a celebrated literature started by Judd (1985) and Chamley (1986)

who �nd that capital taxation decreases welfare and a zero capital tax is thus e¢ cient in

the long-run steady state. From a growth standpoint, models analyzing the equilibrium

relationship between capital income taxes and growth also typically �nd that an increase

of the capital income tax reduces the return to private investment, which in turn implies a

decrease of capital accumulation and thus growth (see Lucas (1990) and Rebelo (1991)). In

contrast, our results are consistent with some other papers in this literature which show that

the optimal capital income tax is positive, i.e., high capital income taxation may restore the

planner�s growth rate (see Uhlig and Yanagawa (1996) and Rivas (2003)). In terms of future

work, one could formalize the second best Ramsey policy within our environment.

Future work can extend our framework to think about comparing the growth and welfare

e¤ects of optimal tax policy on research and development versus funding public investment.

In addition, our model characterizes the optimal tax rate along the balanced growth path.

Future work can model the transitional dynamics.
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Technical Appendix

Appendix A: The Planner�s Version

fCtg : 1
Ct
= �t;

fKt+1g :
��t
Zt

+ ��t+1
�Yt+1(1� �)

Kt+1

� ��t+1
@

@Kt+1

(
Kt+2

Zt+1
)� �2�t+2

@

@Kt+1

(
Kt+3

Zt+2
)� ::: = 0:

) 1

CtZt
=
��Yt+1(1� �)
Ct+1Kt+1

+
�

Ct+1

Kt+2

Z2t+1

@Zt+1
@Kt+1

+
�2

Ct+2

Kt+3

Z2t+2

@Zt+2
@Kt+1

+ :::

where,

@Zt
@Kt+1

=
@Zt+1
@Kt+1

= 0,
@Zt+2
@Kt+1

= (1� )(1� �)Zt+2
Kt+1

,
@Zt+3
@Kt+1

=
Zt+3
Zt+2

@Zt+2
@Kt+1

� �(1� )Zt+3
Kt+1

:

) @Zt+3
@Kt+1

= (1� )Zt+3
Kt+1

((1� �)� �):

) @Zt+3+j
@Kt+1

= j(1� )Zt+3+j
Kt+1

[(1� �)� �]; for j = 0:

Hence,

fKt+1g :
1

CtZt
=
��Yt+1(1� �)
Ct+1Kt+1

+�2
It+2
Ct+2

(1� )(1� �)
Kt+1

+
�3(1� )((1� �)� �)

Kt+1

1P
j=0

�jj
It+j+3
Ct+j+3

(43)

The FOC with respect to n1t is as follows.

fn1tg :
�1
1� nt

+
�t(1� �)Yt(1� �)

n1t
��t

@

@n1t
(
Kt+1

Zt
)���t+1

@

@n1t
(
Kt+2

Zt+1
)��2�t+2

@

@n1t
(
Kt+3

Zt+2
)�::: = 0

where

@Zt
@n1t

=
@Zt+1
@n1t

= 0,
@Zt+2
@n1t

= �(1� )(1� �)Zt+2
n1t

,
@Zt+3
@n1t

=
Zt+3
Zt+2

@Zt+2
@n1t

and so on.

Hence,

fn1tg :
1

1� nt
=
(1� �)Yt(1� �)

Ctn1t
� �

2(1� �)(1� )
n1t

1P
j=0

�jj
It+j+2
Ct+j+2

(44)
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Similarly, the FOC with respect to n2t is given by

fn2tg :
�1
1� nt

+
�t(1� �)�Yt(1� �)

n2t
��t

@

@n2t
(
Kt+1

Zt
)���t+1

@

@n2t
(
Kt+2

Zt+1
)��2�t+2

@

@n2t
(
Kt+3

Zt+2
)::: = 0

where,

@Zt
@n2t

= 0;
@Zt+1
@n2t

=
�Zt+1
n2t

;

@Zt+2
@n2t

=
Zt+2
Zt+1

�Zt+1
n2t

� (1� �)�(1� )Zt+2
n2t

) @Zt+2
@n2t

= (� � (1� �)�(1� ))Zt+2
n2t

:

) @Zt+j+2
@n2t

= j(� � (1� �)�(1� ))Zt+j+2
n2t

; for j = 0:

Hence,

fn2tg :
1

1� nt
=
(1� �)�Yt(1� �)

Ctn2t
+ ��

It+1
Ct+1n2t

+
�2(� � (1� �)�(1� ))

n2t

1P
j=0

�jj
It+j+2
Ct+j+2

:

(45)

The Decision Rules

We use the method of undetermined coe¢ cients to solve out for the decision rules.

Ct = �PYt(1� �);
It = (1� �P )Yt(1� �)
n1 = xPnP

n2 = (1� xP )nP
nt = n:

fKt+1g :
1

CtZt
=
��Yt+1(1� �)
Ct+1Kt+1

+�2
It+2
Ct+2

(1� )(1� �)
Kt+1

+
�3(1� )((1� �)� �)

Kt+1

1P
j=0

�jj
It+j+3
Ct+j+3
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This implies,

) 1

�PYt(1� �)Zt
= �

�Yt+1(1� �)
�PYt+1(1� �)(1� �P )Yt(1� �)Zt

+ �2
(1� �P )

�P (1� �P )Yt(1� �)Zt
(1� )(1� �)

+
�3(1� )((1� �)� �)
(1� �P )Yt(1� �)Zt

(
1

1� � )
(1� �P )
�P

) (1� �P ) =
��(1� �)

(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �]
: (46)

From the FOC for n1t;

nP
1� nP

=
(1� �)
�PxP

� �
2(1� �)(1� )(1� �P )

xP (1� �)�P

) nP =
(1� �)[(1� �)� �2(1� )(1� �P )]

(1� �)[(1� �)� �2(1� )(1� �P )] + �PxP (1� �)
: (47)

From the FOC fn2tg

fn2tg : (1�xP )
�

nP
1� nP

�
=
(1� �)�
�P

+��

�
1� �P
�P

�
+�2(��(1��)�(1�))

�
1

1� �

��
1� �P
�P

�

�
1� xP
xP

�
=
(1� �)�f(1� �)� �2(1� )(1� �P )g+ ��(1� �P )(1� �) + �2�(1� �P )

(1� �)(1� �)� �2(1� �)(1� )(1� �P )

Hence,

xP =
(1� �)f(1� �)� �2(1� )(1� �P )g

(1 + �)(1� �)f(1� �)� �2(1� )(1� �P )g+ ��(1� �P )
: (48)

As long as 0 < (1� �P ) < 1 and (1� �)� �2(1� ) > 0, we can easily show 0 < �P ,
xP , nP < 1. Note,

(1� �)� �2(1� ) = 1� � � �2 + �2
= 1� �2 � �(1� �)
= (1� �)[1 + � � �];

30



which is clearly positive as long as 0 < ; � < 1, which is assumed. Now,

(1� �P ) =
��(1� �)

(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �]

=
��(1� �)

(1� �)� �2(1� )(1� �) + ��3(1� )
> 0

Since,

�2(1� )[(1� �)� ��] < (1� ��)(1� �);

we get, 0 < �P , xP , nP < 1.

Growth rate at the BGP

Yt = A:
�
n1��2t

��
K�
t n

1��
1t

At the balanced growth path (BGP),

gyP = gyPt+1 =
Yt+1
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;
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=
ItZt

It�1Zt�1
= gyP :gzP :

Hence,

gyP = g
�

1��
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1
1��
zP :

Proposition (1)

cgzP = [dMPf(�)�(1� �)1��g(1�)]
1

2� ;

@cgzP
@�

= 0;

) �(�)��1(1� �)1�� � (1� �)(�)�(1� �)�� = 0
) � = �:

Appendix B: Agent�s Version

fKt+1g :
�1
Zt
+

�
1

1 + r

�
�Yt+1(1� � k)

Kt+1

= 0:
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) fKt+1g :
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Kt+1

: (49)

fn1tg :
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Finally,
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The Consumer�s Problem
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fKt+1g :
1

Zt
=

�
1

1 + r

�
�Yt+1(1� � k)

Kt+1

:

Substituting for (1 + r) from fat+1g
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To summarize all FOCs,

fKt+1g :
1

ctZt
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��Yt+1(1� � k)
ct+1Kt+1

fn1tg :
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1� nt
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(1� �)Yt(1� �n)

ctn1t

fn2tg :
1

1� nt
=

�
��

n2t

��
1� �n
1� � k

� 1P
j=0

�jj
It+j+1
ct+j+1

:

When

� k = � k = � ;

we have

fKt+1g :
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ctZt
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The Decision Rules

We use the method of undetermined coe¢ cients to obtain the decision rules

Ct = �CEAYt;

It = (1� �CE)AYt
n1t = xCEnCE

n2t = (1� xCE)nCE
nt = nCE,

where,

fYt � wt(n1t + n2t)g(1� � k) + wt(n1t + n2t)(1� �n) = AYt:

) [�(1� � k) + (1� �)(1� �n)]Yt + wtn2t(� k � �n) = AYt
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) �(1� � k) + (1� �)(1� �n) +
��A (1� �)

(1� � k)(1� �)
(� k � �n) = A

) Yt

�
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(� k � �n)
�
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From the FOC of fKt+1g

fKt+1g :
1

ctZt
=
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ct+1Kt+1

This implies,
1

�CEAYtZt
=
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) (1� �CE) =
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A
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Substituting for (1� �CE)A from 53 into 52,

) A =

�
�(1� � k) + (1� �)(1� �n) +
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�

(54)
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(1� �) :

When �n = � k = �
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= (1� �):

From fn1tg we get

fn1tg :
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From fn2tg

fn2tg :
(1� x)nCE
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Since,

A(1� �CE) = ��(1� � k);

) xCE =
(1� �)(1� �)

��2� + (1� �)(1� �)
:

Appendix C: Equal factor income taxes

(1� �P ) =
��(1� �)

(1� �)� �2(1� )(1� �) + ��3(1� )
:

As � increases, (1� �) decreases, which implies �(1� �) in the denominator increases and
therefore (1� �P ) declines.

) @�P
@�

> 0

We will now look at xP :

1

xP
= (1 + �) +
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(1� �)f(1� �)� �2(1� )(1� �P )g

= (1 + �) +
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:

As � increases the term ��2�
(1��)f(1��)��2(1�)(1��)g declines.

) @xP
@�
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We will now look at nP :

1

nP
= 1 +

xP�P (1� �)
(1� �)f(1� �)� �2(1� )(1� �P )g
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We know that as � increases, xP
(1��) increases because

@xP
@�
> 0. The term

�
1� ��((1��)��2(1�))

(1��)��2(1�)(1��)

�
also increases as � increases. Hence

) @nP
@�

< 0:

In the competitive equilibrium under equal factor income taxes,

A = 1� � :
) (1� �CE) = ��

) nCE =
(1� �)

(1� �) + xCE�CE

) xCE =
(1� �)(1� �)

��2� + (1� �)(1� �)
:

) gzP
gzCE

=

�
(1� xP )�(nP )�(1� �P )(1��)(1�)

� 1
2�

((1� xCE)�(nCE)�(1� �CE)(1��)(1�))
1

2�
:

�CE is independent of �. However, since 0 < �CE < 1,

) @(1� �CE)(1��)
@�

> 0:

We know the term (1� �P ) is given by

(1� �P ) =
��(1� �)

(1� �)� �2(1� )(1� �) + ��3(1� )
:

As  ! 1,

1� �P ! 1� �� = 1� �CE:
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Similarly, as  ! 1 and as � ! 0;

xP ! xCE

nP ! nCE:

) gzCE ! gzP :

The no externalities case

Suppose  = 1 and � = 0. The FOC for the planner�s version are then given by

fCtg : 1
Ct
= �t

fKt+1g :
1

CtZt
=
��Yt+1(1� �)
Ct+1Kt+1

fn1tg :
1

1� nt
=
(1� �)Yt(1� �)

Ctn1t

fn2tg :
1

1� nt
=
��

n2t

1P
j=0

�j
It+j+2
Ct+j+2

:

The FOCs for the agents are summarized as follows,

fKt+1g :
1

ctZt
=
��Yt+1(1� � k)
ct+1Kt+1

fn1tg :
1

1� nt
=
(1� �)Yt(1� �n)

ctn1t

fn2tg :
1

1� nt
=

�
��

n2t

��
1� �n
1� � k

� 1P
j=0

�j
It+j+1
ct+j+1

:

The FOCs coincide when

�n = � k = � :

This implies, the optimal solutions always coincide for the planner and for the agent under
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equal factor income taxes. For the planner, under no externalities,

(1� �P ) = ��

�P = 1� ��

nP =
(1� �)

(1� �) + �PxP

xP =
(1� �)(1� �)

(1� �)(1� �) + ��2�
:

Similarly,for the agents,

A = �(1� � k) + (1� �)(1� �n)�
��2�(�n � � k)
(1� �)

(1� �CE) =
��(1� � k)

A

�CE = 1� ��(1� � k)
A

nCE =
(1� �)(1� �n)

(1� �)(1� �n) + xCE�CEA

xCE =
(1� �)(1� �)

��2� + (1� �)(1� �)
:

Only equal factor income taxes under the no externality case, yields the planner�s growth

rate, except under a very restrictive parametric restriction,�
1� �
�

�2
= �:

Under this equal factor income taxes are one among in�nitely many factor income tax

combinations that decentralize the planner�s growth rate. We can show this as follows.

For growth equalization, we need

nCE =
(1� �)(1� �n)

(1� �)(1� �n) + xCE�CEA
= nP :

38



) xCE�CEA

(1� �n)
= �PxP

) �CEA

(1� �n)
= �P

) A� ��(1� � k)
(1� �n)

= 1� ��

) A� ��(1� � k) = (1� ��)(1� �n)

) �(1� � k) + (1� �)(1� �n)�
��2�(�n � � k)
(1� �) � ��(1� � k) = (1� ��)(1� �n):

Hence,

(�� ��)(1� � k)� (�� ��)(1� �n) =
��2�(�n � � k)
(1� �)

which implies

(1� �)(�n � � k) =
�2�(�n � � k)
(1� �) :

Clearly, as long as (1��)
�

6=
p
�, �n = � k always decentralizes planner�s growth rates.

When (1��)
�

=
p
�, any factor income tax combination decentralizes planner�s growth rate.

As noted in the text, for � = 0:2; (or � = 0:5; as we have used in our numerical exercise) as

in Hu¤man, the value of � = 0:690 98 is very small and is not consistent with the literature.

(When or � = 0:5; � = 0:585 79 which is even smaller. ). We therefore rule out the possibility

of equality.

Appendix D: Agent�s Welfare

We know

Ct = �CEYtA(� k; �n)

) Ct
Ct�1

=
Yt
Yt
= gy

) gc;CE = gy;CE:
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Since gc is a constant, Ct = C0gtc: On the BGP, the supply of labor is the same across time.

We denote welfare by �; where,

� =
1P
j=0

�t[logCt + log(1� nCE)]

� =
1P
j=0

�t logCt +
log(1� nCE)

1� �

) � = logCo + � logC1 + �
2 logC2 + �

3 logC3 + �
4 logC4 + :::::::::+

log(1�nCE)
1��

) � =
logCo
1� � +

�2

1� � log gc;CE +
log(1� nCE)

1� �

) � = log[�CEYtA(�k;�n)]
1�� + �2�

(1��)(1��) log gc;CE +
log(1�nCE)

1��

) � =
log[�CE]

1� � +
log[Y0]

1� � +
log[A(� k; �n)]

1� � +
�2�

(1� �)(1� �) log gc;CE +
log(1� nCE)

1� � :
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4 Figures

Figure 1: Average growth rates for select OECD economies versus the ratio of tax on capital
income to tax on labor income
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Figure 2: Average factor income tax rates for select OECD economies
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Figure 3: Time trend of factor income taxes for G7 economies
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Figure 4: Comparative statics - planner�s growth rate
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Figure 5: Iso-growth loci for � = 0:1,  ! 1 (with externalities) ; Iso-growth locus for � = 0
and  = 1 (without externalities)
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Figure 6: Growth versus welfare: � = 0:1
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